Harnessing the Power of Precision Nutrient Management

Precision nutrient management is a transformative approach in modern agriculture that tailors nutrient applications to the specific needs of crops, optimising both crop and pasture productivity and environmental sustainability. By utilising advanced technologies like soil sampling, variable rate application, and GPS-guided equipment, farmers can apply the right amount of nutrients at the right time and place. 

This method not only maximises crop growth and reduces waste but also minimises the environmental impact, such as nutrient runoff, which can harm waterways. Precision nutrient management represents a critical step toward sustainable and efficient farming, ensuring that resources are used effectively while protecting the environment.

The Core Principles

  • Data-Driven Decision Making: Precision nutrient management relies on detailed data from soil tests, crop monitoring, and weather patterns to inform nutrient application. This data helps farmers understand the specific nutrient needs of different areas within a field, allowing for more accurate and efficient use of fertilizers.

  • Variable Rate Technology (VRT): With VRT, farmers can adjust the rate of nutrient application in real-time based on the variability in soil fertility and crop requirements across a field. This reduces the over-application of nutrients in areas that don’t need them and ensures that deficient areas receive the necessary nutrients for optimal growth.

  • Environmental Stewardship: By applying nutrients more precisely, farmers can significantly reduce nutrient runoff and leaching, which are major contributors to water pollution. Precision nutrient management helps to protect local ecosystems and water supplies by minimising the environmental footprint of agricultural practices.

  • Economic Benefits: Efficient use of nutrients not only supports crop health and yield but also leads to cost savings for farmers. By applying only the necessary amount of fertilisers, farmers can reduce input costs and improve the profitability of their operations.

  • Sustainability and Future-Proofing: As global food demand rises, sustainable farming practices like precision nutrient management are essential to meet this challenge. By adopting these practices, farmers can ensure the long-term health of their soil, maintain high productivity levels, and contribute to global food security.

Implementing Precision Nutrient Management

The successful implementation of precision nutrient management requires a combination of technology, knowledge, and planning. Farmers need access to the right tools, such as GPS-guided tractors (can be sourced through local contractors also), soil sensors/testing, and software that can analyse and interpret data. Additionally, ongoing education and support are crucial to help farmers stay updated on best practices and new developments in the field . 

The transition to PNM is a collaborative effort. Working with PNM experts like Vantage NZ will help guide you through the PNM journey. We offer a range of services, from soil testing and data analysis to VRA technology integration. Our team of experts can work with you to develop a PNM strategy that seamlessly integrates with your existing operation. 

 

Conclusion

Precision nutrient management is not just about maximising crop yields; it’s about doing so in a way that is economically viable, environmentally responsible, and sustainable for future generations. As technology continues to evolve, so too will the capabilities and benefits of precision nutrient management, making it an indispensable part of modern agriculture. By embracing this approach, farmers can achieve a balance between productivity and environmental stewardship, ensuring the long-term success of their operations, NZ agriculture and the health of the planet.

Precision Nutrient Management offers a powerful toolkit to unlock the full potential of your land. Talk to the team at Vantage NZ today about how you can optimise your farm’s productivity, make smarter use of resources, and ensure a sustainable future for your land.  

Find out more at vantage-nz.com/precision-nutrient-management

Soil Moisture 101: A Farming Guide to Soil Moisture Management and Soil Moisture Meters 

Soil Moisture Meter and Vantage Brand Trailor in the Field

In this guide, we’re going to dive into the topic of soil moisture and soil moisture meters. Soil moisture is a subject that may not always receive the attention it deserves, but its a critical aspect for land a plant management. Soil plays a central role in many areas of farming, impacting everything from seed germination to irrigation, fertiliser application, and the growth of food and fibre.  

In New Zealand, we take pride in making the most of our water resources while looking after our beautiful environment. That’s one of the reasons why understanding soil moisture is crucial. Few elements have as much influence as soil moisture, due to its role in nurturing plant growth and ensuring profitable farming. 

Buckle up as we are about to provide you with foundational knowledge about soil moisture and why it matters on your farm. 

The importance of soil moisture in farming

  • Crop Growth and Yield: Adequate soil moisture is essential for successful crop germination, growth, and development because not having enough moisture can lead to poor crop establishment and decreased yields. 
  • Water Management: When it comes to water management, balance is key. Over-irrigation can result in water wastage and nutrient leaching, while under-irrigation can stress crops and reduce yields. Effective soil moisture management helps strike a balance that ensures efficient water use.  
  • Drought Resilience: Soil moisture management plays a pivotal role in drought resilience. Farms with well-balanced soil moisture levels are better equipped for dry periods and can minimise the impact of drought on crops. 
  • Environmental Impact: When talking about soil moisture, we need to think about the environment too. Poor soil moisture management can have environmental consequences including water runoff, contamination of water bodies, and depletion of water resources. By using moisture management strategies, we can reduce these environmental impacts. 

The key benefits of measuring your soil moisture

  • Optimised Irrigation: Monitoring soil moisture helps inform decisions about when and how much to irrigate. That means crops receive the right amount of water which reduces waste and lowers irrigation costs. 
  • Maximised Crop Yield: Proper soil moisture management fosters healthy plant growth which can lead to higher crop yields.  
  • Crop Selection: Different crops have different water needs. With soil moisture insights, you can pick the right crops for your soil conditions. 
  • Reduced Fertiliser Use: Balanced soil moisture enhances nutrient management. When moisture levels are just right, plants can efficiently absorb nutrients, which reduces the need for excessive fertilisation and minimises nutrient runoff.  
  • Financial Planning: Accurate soil moisture data aids the decision-making process, by facilitating efficient resource allocation, reducing input costs, and enhancing profitability. 

Understanding soil moisture levels

To understand soil moisture levels, we need to understand the physical properties of soil. Soil is made up of different-sized particles, such as sand, silt, and clay. The spaces between these particles hold air and water, and the balance between the two is critical to plant growth.  

The amount of water that soil can hold depends on the size of the soil particles and the spaces between them. Sandy soil, for instance, has larger spaces between particles, which means it can hold less water compared to clay soil, which has smaller spaces between particles.  

Soil moisture levels are typically measured in terms of soil moisture tension, which is the force required to remove water from the soil. This measurement is expressed in units of kilopascals (kPa). The higher the soil moisture tension, the drier the soil, and the harder it is for plants to extract water from it.  

So, what happens if I don’t measure my soil moisture? 

Navigating water-related challenges on your farm can be a daunting task. Nature often dictates whether there’s too much water, too little, or it’s in the wrong places within your fields. The unpredictability of rainfall further complicates matters, leaving you with minimal control over the water supply. 

However, it’s crucial to prioritise water management because excessive or insufficient water can result in a number of problems that can negatively impact your farm’s profitability. Some of these risks include:  

  • Delayed planting or harvest. 
  • An increased risk of lower-quality crops. 
  • The need for replanting, which consumes valuable time and resources.
  • Soil compaction, which diminishes soil structure and hinders root and water penetration. 

When faced with water-related challenges in your fields, even small adjustments can significantly improve your profitability by reducing damage, diseases, and crop losses associated with water extremes. 

How soil moisture meters work  

Soil moisture meters work by measuring the electrical magnetic conductivity of the soil, which is directly related to the amount of water present in it. There are two common methods employed by these meters: one involves measuring the capacitance between the probe and the surrounding soil, while the other gauges the resistance of the soil between two prongs. 

In capacitance measurement, electrodes penetrate the soil, with high moisture levels reflected by high capacitance. Conversely, resistive meters measure the electrical resistance between electrodes, where higher moisture content corresponds to lower resistance. Soil moisture meters come in many different forms from TDR’s, tapes, probes and handheld sensors. The moisture meter and software then converts these readings into a moisture reading, which is displayed on a digital screen or gauge.  

Some soil moisture meters also come with additional features, such as temperature sensors, pH sensors, and nutrient sensors, which provide a more comprehensive understanding of soil conditions.

Choosing the right soil moisture meter for your farm 

Choosing the right soil moisture meter can be challenging, given the range of options available in the market. Here are some factors to consider when choosing a soil moisture meter for your farm: 

Crop type 

Different crops have different water requirements, and the type of crop you grow will influence the type of soil moisture meter you will need. Some crops, such as maize can root deeply into the soil profile, while in comparison, ryegrass is much shallower. Selecting a moisture meter that enables the observation of both irrigation effects and root uptake, particularly through active root zones, provides deeper insights into the soil conditions beneath the surface. Moisture meters come in a range of lengths and placements, therefore, accessing what will fit your needs with the crop rotation you have is an important factor. 

Connectivity options 

Soil moisture meters vary across different forms, including cellular, LoRaWan/NBIoT, Bluetooth, handheld devices, and mesh networks. Cellular options are effective when connectivity is robust, with cellular performing better in areas with good coverage and NBIoT being preferable in low-coverage regions. In scenarios where signal strength is a concern, alternatives like mesh networks, Bluetooth, and handheld options may be more suitable. 

Budget 
Soil moisture meters come in a range of prices, from basic models to advanced ones with multiple sensors and features. Consider your budget when choosing a soil moisture meter and select one that provides the necessary features while staying within your budget. 

Ease of use 
Choose a soil moisture meter that is easy to use and maintain. Some models require regular calibration, while others are self-calibrating. Consider the user interface and display when choosing a soil moisture meter, as it should be easy to read and understand. 

Soil Moisture Meters available through Vantage NZ 

We hope you now understand why leveraging technology to monitor soil moisture levels is essential. We offer solutions to help you address water-related challenges, partnering with AquaCheck, Halo Systems, and Metos by Pessl Instruments. 

AquaCheck Soil Moisture Probes 

Aquacheck’s soil moisture probes are filled with features that help you avoid over-watering, potential nutrient leaching and energy waste, while improving crop growth by managing your inputs. 

The high-quality and reasonably priced AquaCheck probes are compatible with a variety of end-user platforms and telemetry options. The vertically oriented probes are simple to use, have wireless access, and an additional connection for a rain gauge.  Aquacheck probes have the benefit of being simple to install and remove, which makes them ideal for seasonal cropping. 

SubSurfaceProbe

HALO Water Management

HALO Systems use innovative software that can be adjusted to your needs, farm-wide control networks, and a user-friendly dashboard for all farm information.   

Halo systems provide a data gateway in the most practical location and connect the sensors needed to meet your requirements. It can work anywhere, at any time, and is solar or mains powered, with cellular and internet connectivity options.  

Halo has a broad range of proven applications ranging from dairy farms to factories, and they can provide specific wired and wireless solutions for any industry use. 

Vantage New Zealand_HALO_weathermonitoringpicture_1160x629c0pcenter_72dpi

METOS by Pessl Instruments

Pessl Instruments offers a wide range of hardware and software solutions for effective soil moisture and irrigation management.  

Soil moisture sensors from Pessl Instruments are designed to help users in making informed irrigation scheduling decisions, resulting in improved yield quantity and quality while lowering water, fertiliser, labour, and energy costs.    

Metos 8

By gaining data-driven insights that guide crop production, conserve resources, reduce expenses, and champion environmental sustainability, soil moisture solutions unlock new potential. That’s why understanding your soil’s moisture content is one of the keys to a sustainable and successful future in agriculture. 

To learn more about how our soil moisture solutions could benefit your farming operation, get in touch with one of our Precision Ag specialists today. 

Fine-Tuning Farming: Variable Rate Lime & PNM

Spreader for PNM & Variable Rate Lime

While New Zealand has a diverse range of soil types, only around 5% are fertile and versatile enough to support food production without significant manipulation. Variable rate lime and precision nutrient management are two important strategies in modern agriculture that can help farmers improve crop yields and reduce environmental impact. 

This approach is particularly important in today’s global economy, where farmers are under pressure to produce more food with fewer resources. By using these techniques, farmers can produce more food with fewer inputs, which is not only good for the environment, but also for the farmers’ bottom line. 

It is possible to have too much of a good thing.  

Accidification of soil occurs naturally, but can also be accelerated by fertilisation practices that decrease soil pH. Plants don’t tend to grow very well if the pH in your soil isn’t quite right. If you read last month’s edition you would have learnt about Yield Mapping and how you can use it to identify the high and low yield areas of your farm. So, how do you fix the low yield areas?  

This is where Variable Rate Lime comes in to play. We are sure you are all aware that Lime affects your PH. Variable rate lime is a technique that involves applying lime to paddocks at different rates based on soil test results. Lime is a valuable amendment for many soils, as it raises the pH and makes other nutrients more available to plants.  

If you have an acidic low pH soil you can add lime to raise pH levels, but lime is a very challenging material to spread due to its fine and non-uniform particle size. Applying too much can also waste product and damage the environment. Lime applied at a variable rate aims to reduce the variability of soil pH levels across the paddock by applying only what’s needed.  

So how do you figure out how much lime is required and where?  

Enter an important tool in your precision ag toolkit – Precision Nutrient Management.  

Precision Nutrient Management allows you to apply the right amount of nutrients only to the area that requires it, as determined by soil sampling. This process gives you a greater understanding of nutrient levels across your farm and the ability to correct any issues. 

Not all soil is the same. Your nutrients could be affected by the area you live in, your soil type, or you could have years of nutrient build-up in your soil from previous farming practices. Soil testing gives you an accurate map of nutrient levels within your paddock. Thanks to GPS technology, the data is accurate and the process is repeatable from the same points in the future. 

Using the soil test results, you can then use variable rate fertiliser allowing you to use fertilisers more efficiently and reduce the soils variability across a paddock. Through this method, both yields and environmental sustainability can be improved, while saving money on nutrients. 

So how does it work?  

We will take samples of soil from across your paddocks to determine their nutrient levels. We then work directly with the farmer or your preferred nutrient advisor team to ensure you are applying the right nutrients in the right places at the right time.  

Short term financial pain for long term gain. No two farms are alike, so until testing is done, you can’t tell what your nutrient levels are and what rates of fertiliser you need to apply to get your nutrient levels at optimum levels for plant growth. After performing tens of thousands of hectares of PNM across NZ, the general rule is that you will have to apply less lime in the first year (because the amount is already too high in most areas) and this will cover the soil sampling costs, with any additional nutrient (P, K etc.) savings being the cherry on top. 

If you don’t overapply or underapply nutrients, your range of nutrients will decrease year after year, and it is during this adjustment period (depending on how often you sample soil and apply lime and fertiliser) that you will achieve the greatest savings. Not only will you save money on fertiliser, but you will also enjoy increased plant growth and health as a result of reducing nutrient limitations. 

Trimble Ag Software and PNM

Using Trimble displays and Trimble Ag Software provides significant advantages in precision nutrient management. The integrated suite of tools and technologies offered by Trimble enables farmers to optimise the application of fertilisers with unmatched accuracy, enhancing crop yields and minimising environmental impact. The software’s advanced algorithms and real-time monitoring capabilities allow for precise variable-rate application, ensuring that nutrients are distributed precisely where and when they are needed most.


With Trimble Displays, Trimble Ag Software, AutoSync & Field_IQ, farmers can streamline their nutrient management workflows and record-keeping, reducing unnecessary paperwork and giving them more time back for doing what they’re best at – feeding NZ and the world.

Ready to take the guesswork out of farm nutrient management and stop blanket rate application? Talk to us today about precision nutrient management.  

Find out more at vantage-nz.com/precision-nutrient-management

Soil Testing in Mid Canterbury – Pye Group Case Study

Pye Group is an agricultural company owned by Leighton and Michelle Pye, operating 11 dairy farms and over 4,800 hectares of land across Temuka, Rangitata, Hinds, Rakaia, and Fairlie.

Their primary activities include dairy grazing for their own cows, substantial cropping (grains, wheat, barley, milling wheat, specialty grasses, and vegetables), and supplying turf grass to the US for golf courses. They also supply 25,000 tonnes of carrots and 15,000–18,000 tonnes of potatoes to McCains annually.

Working with Vantage NZ since 2012, the company has invested in soil testing, moisture probes, EM soil surveying, and yield mapping. This has helped them better understand soil quality and exactly what nutrients each piece of their land needs.

One of the biggest challenges for Pye Group is ensuring a balanced nutrient supply for optimal growth on their cropping farms and being able to provide proof of placement. Prior to working with Vantage, the group used blanket application of fertiliser, applying a standardised amount across the whole farm. 

The solution:

With Precision Nutrient Management, they are now able to apply variable rates of products such as Lime, Potassium Chloride, Superphosphate and Magnesium Oxide based on maps that outline the exact quantity each part of the paddock needs. They have found that in some paddocks, three quarters will receive no nutrients, and one corner will need four different rates. If they had blanket applied, they would have overloaded the majority of the soil.

Outcomes:

This approach has significantly increased their yield and allowed Pye Group to optimise fertiliser use and reduce waste.  The precision approach to fertilising has had numerous benefits for the Pye Group, including cost savings on transportation, time, effort, labour, fuel, and equipment wear and tear. Additionally, having guidance on equipment has resulted in savings of up to 10% on overlap. This translates into close to $50,000 in savings per percent of overlap in nutrients.

Soil testing has also been used on their dairy farms to ensure that there is no nutrient overload at the front of the paddock where the gate is located. The cows always return to the dairy shed through the gate, transferring all the concentrated nutrients from the back of the paddock to the front in their manure and urine. With this information, The Pye Group has implemented exclusion zones in the first 10% of the paddock, as nutrients are not required there.

Tony Gould, Operations and Transport Manager, has been implementing PNM strategies with the help of Vantage NZ and Ravensdown and has invested a lot of time and effort into data capture and quality.

“You can’t argue with data and can make long-term, data-driven plans that relate to real information; it’s not estimated. People either overestimate or underestimate, but when you have the data, you can actually see what you have done and what the result has been. Unless you get soil testing done and use variable rate application, you just can’t make targeted decisions,” said Tony.

Precision Agriculture Data on the computer at Pye Group

Precision agriculture has been a game-changer for the Pye Group, and they believe that it is a solution that can be implemented on any scale. You just need to start. 

To find out how precision ag could help you to reduce costs and maximise profits, contact Vantage NZ on 0800 482 682 or vantage-nz.com.